Identification and characterization of novel NMDA receptor antagonists selective for NR2A- over NR2B-containing receptors.
نویسندگان
چکیده
NR1/NR2A is a subtype of N-methyl-d-aspartate receptors (NMDARs), which are glutamate and glycine-gated Ca(2+)-permeable channels highly expressed in the central nervous system. A high-throughput screening (HTS) campaign using human osteosarcoma (U-2 OS) cells transiently transduced with NR1/NR2A NMDAR subunits, tested in a specifically designed fluorometric imaging plate reader (FLIPR)/Ca(2+) assay, identified sulfonamide derivative series, exemplified by 3-chloro-4-fluoro-N-[(4-{[2-(phenylcarbonyl)hydrazino]carbonyl}phenyl)methyl]benzenesulfonamide (compound 1) and thiodiazole derivative N-(cyclohexylmethyl)-2-({5-[(phenylmethyl)amino]-1,3,4-thiadiazol-2-yl}thio)acetamide (compound 13) as novel NR1/NR2A receptor antagonists. Compounds 1 and 13 displayed submicromolar and micromolar potency at NR1/NR2A receptor, respectively, although they did not show activity at NR2B-containing receptor up to 50 μM concentration. Addition of 1 mM glycine, but not 1 mM l-glutamate, was able to surmount compound 1 and 13 inhibitory effects in FLIPR NR1/NR2A assay. However, compounds 1 and 13 displaced a glutamate site antagonist [(3)H]d,l-(E)-2-amino-4-propyl-5-phosphono-3-pentenoic acid ([(3)H]CGP 39653) to a greater extent than the glycine site antagonist [(3)H]3-[(E)-2-carboxy-2-phenylethenyl]-4,6-dichloro-1H-indole-2-carboxylic acid ([(3)H]MDL 105,519), in rat brain cortex binding assay. Results of FLIPR cell-based, electrophysiological, and biochemical binding assays suggest that compounds 1 and 13 are the prototypes of novel classes of NMDAR ligands, which to the best of our knowledge are the first selective antagonists at NR1/NR2A over NR1/NR2B receptor, and might constitute useful tools able to elucidate the relative role of the NR2A subunit in physiological and pathological conditions.
منابع مشابه
N-methyl-D-aspartate (NMDA) receptor NR2 subunit selectivity of a series of novel piperazine-2,3-dicarboxylate derivatives: preferential blockade of extrasynaptic NMDA receptors in the rat hippocampal CA3-CA1 synapse.
N-Methyl-d-aspartate (NMDA) receptor antagonists that are highly selective for specific NMDA receptor 2 (NR2) subunits have several potential therapeutic applications; however, to date, only NR2B-selective antagonists have been described. Whereas most glutamate binding site antagonists display a common pattern of NR2 selectivity, NR2A > NR2B > NR2C > NR2D (high to low affinity), (2S*,3R*)-1-(ph...
متن کاملNative N-methyl-D-aspartate receptors containing NR2A and NR2B subunits have pharmacologically distinct competitive antagonist binding sites.
The pharmacological properties of native N-methyl-D-aspartate (NMDA) receptors were determined in rat brain sections with quantitative autoradiography of [(3)H](E)-2-amino-4-propyl-5-phosphono-3-pentenoic acid (CGP39653) binding. With five competitive antagonists as displacers, two subpopulations of binding sites were observed in the horizontal plane of section examined. These two populations c...
متن کاملIn developing hippocampal neurons, NR2B-containing NMDA receptors can mediate signalling to neuronal survival and synaptic potentiation, as well as neuronal death
It has been suggested that NR2B-containing NMDA receptors have a selective tendency to promote pro-death signalling and synaptic depression, compared to the survival promoting, synapse potentiating properties of NR2A-containing NMDA receptors. A preferential localization of NR2A-containing NMDA receptors at the synapse in maturing neurons could thus explain differences in synaptic vs. extrasyna...
متن کاملDevelopment and subunit composition of synaptic NMDA receptors in the amygdala: NR2B synapses in the adult central amygdala.
NMDA receptors are well known to play an important role in synaptic development and plasticity. Functional NMDA receptors are heteromultimers thought to contain two NR1 subunits and two or three NR2 subunits. In central neurons, NMDA receptors at immature glutamatergic synapses contain NR2B subunits and are largely replaced by NR2A subunits with development. At mature synapses, NMDA receptors a...
متن کاملMembrane insertion of new AMPA receptors and LTP induced by glycine is prevented by blocking NR2A-containing NMDA receptors in the rat visual cortex in vitro.
N-methyl-D-aspartate receptors (NMDA-Rs) activation has been implicated in various forms of synaptic plasticity depending on the receptor subtypes involved. However, the contribution of NR2A and NR2B subunits in glycine-induced long-term potentiation (LTP) of miniature excitatory postsynaptic currents (mEPSCs) in layer II/III pyramidal neurons of the rat visual cortex remains unclear. The prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 335 3 شماره
صفحات -
تاریخ انتشار 2010